A PSO Based Incremental Hyper-Sphere Partitioning Approach to Classification
نویسندگان
چکیده
This paper proposes an incremental hyper-sphere partitioning approach for classification problems. Hyperspheres that are close to the classification boundaries of a given problem are searched using an incremental approach based upon Particle Swarm Optimization (PSO). This new algorithm is proposed to tackle the difficulty of classification problems caused by the complex pattern relationship with a simplified expert rule structure. We solve classification problems through a combination of hyper-sphere partitioning and a Euclidean-distance based partitioning approach. Moreover, an incremental approach combined with output partitioning and pattern reduction is applied to cope with the curse of dimensionality. The algorithm is tested with seven datasets. The experimental results show that this proposed algorithm outperforms ILEGA (our former research work) and normal GA significantly in the final classification accuracy. In terms of the time complexity, it also gains significant improvement in comparison with ILEGA. A PSO Based Incremental Hyper-Sphere Partitioning Approach to Classification
منابع مشابه
Incremental Hyper-Sphere Partitioning for Classification
In this paper, an Incremental Hyper-Sphere Partitioning (IHSP) approach to classification on the basis of Incremental Linear Encoding Genetic Algorithm (ILEGA) is proposed. Hyper-spheres approximating boundaries to a given classification problem, are searched with an incremental approach based on a unique combination of genetic algorithm (GA), output partitioning and pattern reduction. ILEGA is...
متن کاملIncremental procedures for partitioning highly intermixed multi-class datasets into hyper-spherical and hyper-ellipsoidal clusters
Two procedures for partitioning large collections of highly intermixed datasets of different classes into a number of hyper-spherical or hyper-ellipsoidal clusters are presented. The incremental procedures are to generate a minimum numbers of hyper-spherical or hyper-ellipsoidal clusters with each cluster containing a maximum number of data points of the same class. The procedures extend the mo...
متن کاملEllipsoid ART and ARTMAP for Incremental Clustering and Classification
We introduce Ellipsoid-ART (EA) and Ellipsoid-ARTMAP (EAM) as a generalization of Hyper-sphere ART (HA) and Hypersphere-ARTMAP (HAM) respectively. As was the case with HMHAM, these novel architectures are based on ideas rooted in Fuzzy-ART (FA) and Fuuy-ARTMAP (FAM). While FMFAM aggregate input data using hyperrectangles, EA/EAM utilize hyper-ellipsoids for the same purpose. Due to their learni...
متن کاملIncremental evolution strategy for function optimization
This paper presents a novel evolutionary approach for function optimization Incremental Evolution Strategy (IES). Two strategies are proposed. One is to evolve the input variables incrementally. The whole evolution consists of several phases and one more variable is focused in each phase. The number of phases is equal to the number of variables in maximum. Each phase is composed of two stages: ...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 5 شماره
صفحات -
تاریخ انتشار 2014